

Session 4

Interpretation of drawings, music scores, tables, etc.

Chairs

Mickaël Coustaty (L3I, Université de La Rochelle) Véronique Eglin (LIRIS, INSA de Lyon)

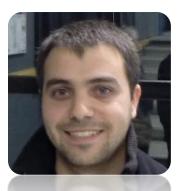
Short presentation of chairs

Véronique Eglin

- Professor @ LIRIS (INSA de Lyon)
- Handwriting analysis, word-spotting, writer identification, retrieval
- Digital Humanities / Historical documents

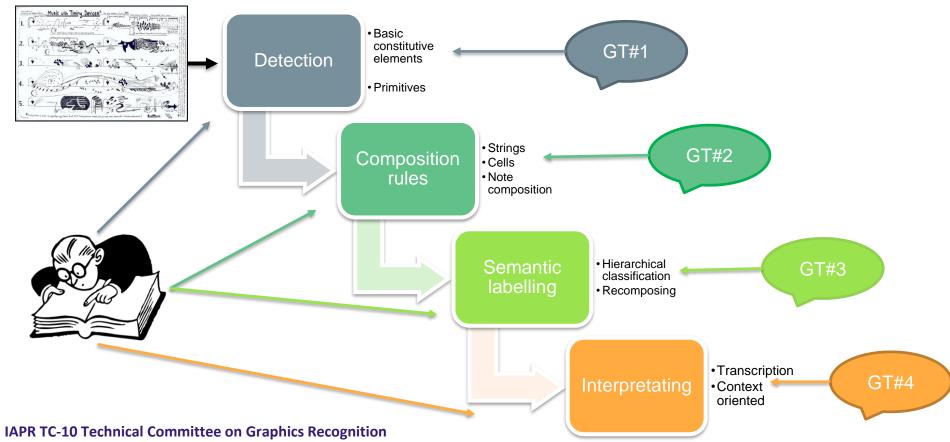
Mickaël Coustaty

- Associate Professor @ L3i (University of La Rochelle)
- Indexing of graphics in historical documents
- Digital Humanities / Fraud Detection and Forensics



12th IAPR International Workshop on Graphics RECognition Kyoto, 9-10 Nov. 2017

Context of graphical content interpretation



12th IAPR International Workshop on Graphics RECognition Kyoto, 9-10 Nov. 2017

Needs and open problems

- Needs:
 - More genericity in the detection and recognition steps
 - User knowledge in the process loop
- Main tasks:
 - The detection of basic constitutive elements / primitives (text, beams, note-head, stems, boxes)
 - The recognition of degraded symbols, distorted plans
 - The ground truth generation and the annotation of datasets
- Current status: no generic methodologies for drawing interpretation (tables, architectural plans, music scores)
- Open problems (not yet solved): efficient solutions with unbalanced data, high-level of heterogeneity and low quality of data, no efficient annotated datasets, no fair solution for mobility

Paper 1

Camera-based Optical Music Recognition using a Convolutional Neural Network

Adria Rico, Alicia Fornès, CVC Barcelona

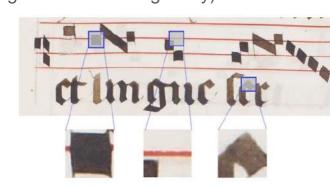
- Need for a robust and accurate camera-based OMR system dedicated to mobilecaptured music scores.
- Proposition based on a neural architecture using a CNN for music symbols classification, exploration of deep features to improve low quality images.
- A proposition that relies on the automatic generation of ground-truth images

Paper 2

Music Document Layout Analysis through Machine Learning and Human Feedback

Jorge Calvo-Zaragoza, Ke Zhang, Zeyad Saleh, Gabriel Vigliensoni and Ichiro Fujinaga

- An answer to overcome the lack of genericity of analysis systems that must be redesigned when working with different sources of data
 - before the step of symbols recognition
 - o in a context of historical and/or real datasets (containing a high level of heterogeneity)
- Contribution to a user-aided classification scheme to segment efficiently categories of music scores elements and validated by a quantification of user's effort



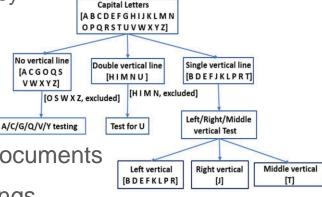
12th IAPR International Workshop on Graphics RECognition Kyoto, 9-10 Nov. 2017

Paper 3 Automatic Orientation Correction of AEC Drawing Documents

Bhagesh Seraogi, Supriya Das, Purnendu Banerjee, Bidyut Chaudhuri, Himadri Majumdar,

Work on Architectural, Engineering, Construction documents

- Documents composed of texts and graphical drawings
- Need to detect skew/orientation to increase OCR system
- Propose an approach to detect and correct the orientation using new features



Paper 4 Interpreting data from scanned tables

Waleed Farrukh, Antonio Foncubierta-Rodriguez, Anca-Nicoleta Ciubotaru, Guillaume Jaume, Costas Bekas, Orcun Goksel, Maria Gabrani

- Work on table interpretation
- Extract basic objects of tables (characters, line segments)
- Conversion to table specific structural elements (strings, cells)
- Classification of table content (data vs headers)
- Extract the structure of the header cells (interpretation)
- First work on interpretation of tables

Category	2005				2010				Difference	
	Number	Margin of error (±)	Percent	Margin of error (±)	Number	Margin of error (±)	Percent	Margin of error (±)	Number	Percen
All ages	291,099	*****	100.0	(X)	303,858	*****	100.0	(X)	**12,760	(X
With a disability	54,425	894	18.7	0.3	56,672	905	18.7	0.3	*2,247	
Severe disability	34,947	601	12.0	0.2	38,284	654	12.6	0.2	*3,337	*0.6
Aged 6 and older	266,752	84	100.0	(X)	278,222	88	100.0	(X)	*11,469	(X
Needed personal assistance	10,996	336	4.1	0.1	12,349	386	4.4	0.1	*1,353	*0.3
Aged 15 and older	230,391	*****	100.0	(X)	241,682	*****	100.0	(X)	**11,291	(X
With a disability	49,069	794	21.3	0.3	51,454	838	21.3	0.3	*2,385	
Severe disability	32,771	567	14.2	0.2	35,683	631	14.8	0.3	*2,912	*0.5
Difficulty seeing	7,793	350	3.4	0.2	8,077	354	3.3	0.1	284	
Severe	1,783	129	0.8	0.1	2,010	139	0.8	0.1	*228	0.
Difficulty hearing	7,809	325	3.4	0.1	7,572	320	3.1	0.1	-237	*-0.3
Severe	993	103	0.4	-	1,096	122	0.5	0.1	103	
Aged 21 to 64	170,349	185	100.0	(X)	177,295	193	100.0	(X)	*6,945	(X
With a disability	28,141	622	16.5	0.4	29,479	705	16.6	0.4	*1,338	0.
Employed	12,838	495	45.6	1.2	12,115	432	41.1	1.0	*-723	*-4.5
Severe disability	18,705	469	11.0	0.3	20,286	566	11.4	0.3	*1,581	*0.5
Employed	5,738	277	30.7	1.2	5,570	261	27.5	1.0	-167	*-3.
Nonsevere disability	9,436	403	5.5	0.2	9,193	374	5.2	0.2	-243	*-0.4
Employed	7,100	356	75.2	1.6	6,544	311	71.2	1.6	*-556	*-4.
No disability	142,208	636	83.5	0.4	147,816	733	83.4	0.4	*5,607	-0.
Employed	118,707	678	83.5	0.3	116,881	862	79.1	0.4	*-1,826	*-4.
Aged 65 and older	35,028	*****	100.0	(X)	38,599		100.0	(X)	**3,571	(X
With a disability	18,132	324	51.8	0.9	19,234	327	49.8	0.8	*1,102	*-1.5
Severe disability	12,942	273	36.9	0.8	14,138	276	36.6	0.7	*1,196	-0.3

Discussion and open questions

- Contextualisation of the symbol recognition to improved interpretation
 - Ex: Instead of training on individual segmented symbols without context, what about the direct translation of full lines of sheet music?
- Dataset and ground-truth: large corpora of sufficiently diverse annotated symbols are difficult and expensive to produce
 - Are deep architectures new promising solutions for graphics/symbols recognition? For music scores are they compatible with inherent constraints: unbalanced data, regular and irregular data, unlabelled datasets...?
 - How to reduce the data requirement for training (when not available)?
- User-interactions: expert or non-expert ?
 - What about the role of "expert" user to help the recognition system? (ex of musicologists in the critical steps of validation of grouping hypothesis, of pruning of non relevant combination of compound notes...)